Classic, vintage, or retro computer systems are well documented on sites like Wikipedia. Their historic position is well known. Their schematics are even published from original documentation. But how useful are those schematics in their current form? (Spoiler, not much.) Presented at KiCon 2019.
Low side vs. High side transistor switch
Why do these both exist, how do they work, and when do you use them?
by

A common task for a transistor is switching a device on and off. There are two configurations for a transistor switch: low side and high side. The location of the transistor determines the type of circuit and its name. Either transistor configuration can use a BJT or MOSFET.
In this post, I draw the configuration for both transistor types, talk about which requires a driver, and explain why you would use either. If you are new to transistors, check out the resource links at the bottom. I have a couple of videos I made and some from element14’s The Learning Circuit which do a great job introducing transistors.
Continue Reading »
On April 26th and 27th, the first year of KiCad KiCon kicks off in the Windy City. Join me and 26 others for talks about the open source electronics CAD tool. The list of speakers is impressive. There are many names which I follow on social media and some I recognize from the KiCad team. For example, Wayne Stambaugh is the KiCad project leader and has one of the keynote talks.
You can see the full list of KiCon talks here. And tickets are available here.
Bald Engineer’s Apple IIgs KiCon Talk
Here is the description for my KiCon talk.
While documentation exists for 1970’s and 1980’s calculators and computers, unfortunately they exist in bitmap formats. As I started converting parts of the Apple IIgs schematic to KiCad, I realized something. There are benefits to “preserving” historical schematics in a living, active, and open format. In this talk, I talk about my experiences in converting scanned PDFs into KiCad, the project behind that motivation, and to encourage help from others to preserve history with KiCad.
So what is it? Well, several months ago, I did a couple of Apple IIgs hardware live streams. I have a project in mind for the MEGA-II ASIC. But before I could move forward on the project, I wanted a modern version of the IIgs schematic.
While schematics for classic 8 (and 16-bit) computers are readily available, they are usually only in PDF format. Studying the design is like reading a book. While I am glad the PDFs are available, I would like to be able to do actions like a search.
In my talk, I’ll explain why we should be converting these classic schematics into an open format. Along the way, I’ll take the audience through my journey of using KiCad for this project. In the end, I’ll be asking for help to convert other classic computer schematics.
Where is KiCad KiCon 2019?
The location for the conference is mHUB in Chicago, IL. If you’re able to attend in person, I look forward to meeting you. If you’re not able to travel, I fully expect either a live stream or recorded versions of the talks to be available.
Date: | April 26, 2019—April 27, 2019 |
---|---|
Event: | KiCon 2019 - Preserving history with KiCad |
Topic: | Preserving history with KiCad |
Venue: | mHUB |
Location: | 965 W Chicago Ave Chicago, IL 60642 |
Public: | Public |
Registration: | Click here to register. |
The concept of high end varies depending on what you are talking about and who you talk too. In this Evaluation Engineering Evaluation Engineering article the author discusses high-end oscilloscopes. I am mentioned several times in this article as part of my day job at Rhode and Schwarz. There I am a product manager for oscilloscopes in North America. We have scopes that range from 50 MHz to 8 GHz.
For a little bit of context let me explain how this type of article works. The author, or editor, reaches out to some field experts. Each person is asked to fill out a written interview form. From there the author compiles the responses into a story like this one. This process is always nerve racking to me. I always worry I’ll misquote a specification or make a major typo. I don’t get see the article until it is published.
If you aren’t familiar with high bandwidth oscilloscopes, I think you will still find some value in reading about my favorite test tools.
Date: | March 25, 2019 |
---|---|
Appearance: | High-end Oscilloscope report on Evaluation Engineering |
Outlet: | Evaluation Engineering |
Format: | Magazine |
2019-03-27
If I were a professional actor, I would feel typecast at this point in my career. Whenever someone wants to talk about Arduino, Oscilloscopes or Capacitors, they call me! In this case, element14 asked me to do two videos on how to replace multilayer ceramic capacitors (MLCCs) with Polymers.
Polymers are an interesting capacitor type. What is usually called a “polymer” is better a called a “polymer electrolytic.” The reason for that detail is the word “polymer” describes the cathode layer and not the dielectric.
For more details, why not check out this episode of element14 Presents’ The Learning Circuit! If you have questions about these capacitors, head over to element14 and leave me a comment there.
Date: | February 13, 2019 |
---|---|
Appearance: | Polymer Capacitor Introduction on e14s The Learning Circuit |
Outlet: | element14 Presents' The Learning Circuit |
Format: | Vlog |
06-FEB-2019
Right after the digital multimeter, or DMM, a soldering iron is a must-have tool for electronics work. Like most tools, there is a vast variety of options available. In this episode of element14’s Workbench Wednesdays, I look at a range of instruments from Weller. They offer everything from a cheap $10 “fire starter” (sorry, it is what we call them!) all the way up to a full-blown surface mount rework station.
Whether you don’t have a soldering iron or you have a $100 station, this video will show you options to consider when thinking about an upgrade.
After you watch the video, head over to element14 and tell me for you favorite solder tips! (Or your most burning questions!)
2019-01-02
Over on element14, Karen hosts The Learning Circuit. It is a tutorial show geared towards learning STEM basics. So far she has covered subjects like soldering, diodes, and how to make a DIY electromagnet. She did a great job on introducing BJTs and how they work. While I thought she provided a clear explanation of the internal workings, some members of the element14 community still had questions.
She invited me on to revisit BJTs and transistors to (hopefully) clarify the connection between how transistors physically work and how to use them.
Connect pins with KiCad Bus, Labels, and Global Labels
When to use them and why in a KiCad Schematic
by
When your schematic has a large number of related signals, it is helpful to group them. In its schematic editor, KiCad has a few tools to help. Your end-goal helps determine which tools to use. For example, do you need a KiCad bus or a label? In this post, I explore how you can define signals, group them, and reference them across schematic sheets.
Up until recently, I did not need to use a bus or multiple sheets. However, the Apple IIgs project I’m working on is too large for a single page. In a KiCad live stream, I looked at how to create busses and connect them. In a separate tutorial, I will show how to work with multiple sheets in KiCad.
Lastly, if you are not familiar, KiCad is an Open Source eCAD tool. Although I have used others, this one currently my preferred platform.
KiCad Bus, Label, and Wire
Before jumping to how to use a bus, first, we need to start with the basics. KiCad connects nodes with a “wire” element. KiCad gives each wire drawn a unique name unless it connects to an existing node. The user can override the name by adding a label.
Continue Reading »
2018-11-18
Watch What is the Apple IIgs? Highlight | AddOhms Live from
During a live stream, I was asked: “What is the Apple IIgs?” In this AddOhms Live Twitch Clip, I answer the question.
The Apple IIgs was the last of the highly successful Apple II line of computers. The “GS” stood for “graphics” and “sound.” Compared to previous Apple II computers, the IIgs was a fully 16-bit machine. When connected to its proprietary RGB monitor, it rendered a gorgeous display. Sadly, not much software took advantage of the improved graphics and sound capabilities. The IIgs was fully backward compatible with the older 8-bit line of Apple II computers. Its compatibility was so good that most IIgs users only used it in the compatibility mode.
How did the Apple IIgs achieve backward compatibility?
The IIgs contains an ASIC called the “MEGA-II.” (Which has nothing to do with the “Mega” Arduino boards.) It includes all of the individual logic chips from the original Apple II design as a single IC. Well, in addition to that IC you also need to add a CPU, RAM, and a ROM.
In my opinion, the Apple IIgs is best of the Apple IIs. In fact, of computers in that era, it is my overall favorite. When I got the IIgs, it replaced my previous pick: a Macintosh SE/30.
In this element14 Workbench Wednesdays episode, I review tools provided by Weller which are suitable for surface mount soldering. Through-out the soldering series, I have been using mini-projects to see how the gear works. Making this particular video was special to me. The subject was a TI-85. Back when I was a kid, one of my first soldering projects was to replace a capacitor in the TI-85. At the time, all I knew is that the change would make it run faster. I didn’t know why I just knew it worked.
Today, I now know that capacitor was part of an RC oscillator for the Z80 CPU. It clocked the processor. By putting in a lower value, such as 2.2 or 4.7 pF, the calculator would speed up. The trade-off, of course, is that it means the batteries drain faster! But hey, before someone created Zshell, this was the only way to make Breakout run fast.
Of course, the focus of the episode is the gear from Weller. So please, hit-up element14 and check that stuff out. You can also find the polls I mention at the end of the video there.
Watch, Comment, and Vote on element14