6 things I learned about KiCad at KiCon 2019

Re-cap of the stuff I found interesting at the first conference for hardware developers

KiCon 2019 Review

In April 2019, hardware hackers, hobbyist, and engineers joined together for the first KiCon. A couple of people asked me, “why is there a conference for KiCad?” Some questioned if KiCad was significant enough software to warrant a conference. That question is valid. But KiCon is larger than the KiCad software. Even in its first iteration, KiCon evolved more into a meeting for people building electronics hardware from small scale hobbyist to professionally designed systems, than just a conference on a single piece of software. Some might call it a maker conference. I call it a hardware developer conference. The key that tied everyone together is the open source software behind our printed circuit boards.

Twenty-five different talks covered basic KiCad usage, automating tasks, PCB layout techniques, and projects designed in KiCad. Wayne Stambaugh ended the first day with a State-of-KiCad discussion. He introduced the feature list for KiCad 6. Additionally, he announced four new lead developers and that he would be working on KiCad full time. That news means it is likely KiCad 6 will be here faster than the usual two-year release cycle.

In addition to the talks, there were several workshops and panel discussions. The workshops included a getting started with KiCad lead by Shawn Hymel [link]. That one was cool to keep an eye on because people were designing their first PCB, milling it, and then soldering parts to make the boards blink. In another workshop, Anool Mahidharia provided a hands-on guided introduction to FreeCAD. It is a parametric mechnical cad tool. The panels featuerd PCB manufactureres, workflow discussions, and the KiCad development team.

Outside of the planned classes and activities, I finally shook hands with friends whom I only knew through social media. Even though we are all electronics enthusiast or professional engineers, it is rare we end up at the same place at the same time. See what I mean about KiCad connecting liked minded people together?

With so much going on, I realized I couldn’t cover everything. Instead, this post’s focus is the tidbits I learned at the conference and stuck with me after a little bit of time passed. Here are the six things I learned at KiCon 2019.

Continue Reading »

Tenma Portable Hand Held Supply – Workbench Wednesdays

element14 Presents on YouTube
2019-05-08

The TENMA portable power supply (72-2660) offers bench supply capability in a backpack friendly package. The single output is capable of 45 watts with up to 30 volts and 3.75 amps out. The built-in USB ports offer an easy way to power 5 Volts Arduino or Raspberry Pi projects while limiting their current. See how this portable supply performs, the things the Bald Engineer likes about it, and the points to consider before buying

This $100 power supply is cool. It’s about the size of a digital multimeter but can output 45 Watts. Both voltage and current are adjustable. It can output up to 30 volts and 3.75 amps, but not at the same time. It does have a flaw in its design though. Fortunately, I was able to find and apply a fix for it. Overall, if you want a portable adjustable supply, this one is worth checking out.

Visit element14 Community Page

Health and Solder Fumes – Workbench Wednesdays

element14 Presents on YouTube
2019-04-10

An overlooked danger of electronics soldering is the fumes. While the smell and smoke may not be pleasant, the chemicals in the fumes can be harmful. Is solder made with lead(Pb) your only concern? Learn about where lead-free solder came from, what different flux types mean, and two ways to keep your air (and your lungs clean.)

In the video, I show a cheap “smoke eater” and a professional fume extractor. There is a cost difference of $50 and $700 between the two. However, either is better than having nothing.

Ask Questions on element14

7 MOSFET Myths and Misconceptions Addressed

Let's set some things straight

MOSFET Myths and Facts

The most popular AddOhms video is my short tutorial on MOSFET basics. In the years since I posted the video, people have sent me many questions. While answering those questions I’ve learned quite a bit as well. For example, in that video, I say that Vgs is the threshold to turn on the MOSFET. Well, it turns out, that is not entirely true. It is the threshold to turn it off! Oops. A minor point with a subtle difference, but a common MOSFET misconception.

In this post, I dispel that and other common myths and misconceptions around using MOSFETs. As with all engineering tips and tricks, this post is not a definitive guide to FETs. Instead, it is meant to be a guide to help you ask the right questions to design in the correct part.

1. Misconception: You don’t need resistors on the gate

Back when I made the AddOhms episode, I added a resistor to the MOSFET’s gate pin. Of course any time a resistor is shown in a schematic, people get worried about what complicated formula is needed to determine its value. For slow switching applications, like below 10 kHz, the resistor value doesn’t matter. Something in the 100 to 1000 KOhm range is fine.

P-Channel with series gate resistor

P-Channel with series gate resistor

So if the value does not matter, why have one? The gate of a MOSFET is a small capacitor. And what happens when applying a voltage to a capacitor? It starts charging.

Resistor-Capacitor Charging Curve: Voltage and Current

Resistor-Capacitor Charging Curve: Voltage and Current

The initial current is very high. It slows down as the capacitor charges. That initial current rush, also known as in-rush current, can be a problem. Even though it is a short time, there is a significant current surge that can damage an I/O pin. Depending on the size of the MOSFET’s gate capacitance, it may not be necessary to include that resistor. I wish I could say to “just” add it any time you use a MOSFET. If there is a high switching frequency, say 100 kHz or higher, then you have to worry about the RC charging curve created by the resistor and the gate capacitance.

Continue Reading »

Classic, vintage, or retro computer systems are well documented on sites like Wikipedia. Their historic position is well known. Their schematics are even published from original documentation. But how useful are those schematics in their current form? (Spoiler, not much.) Presented at KiCon 2019.

Download Slides (8mb)

Low side vs. High side transistor switch

Why do these both exist, how do they work, and when do you use them?

Low switch vs High switch Banner

A common task for a transistor is switching a device on and off. There are two configurations for a transistor switch: low side and high side. The location of the transistor determines the type of circuit and its name. Either transistor configuration can use a BJT or MOSFET.

In this post, I draw the configuration for both transistor types, talk about which requires a driver, and explain why you would use either. If you are new to transistors, check out the resource links at the bottom. I have a couple of videos I made and some from element14’s The Learning Circuit which do a great job introducing transistors.

Continue Reading »

KiCad KiCon 2019 BannerOn April 26th and 27th, the first year of KiCad KiCon kicks off in the Windy City. Join me and 26 others for talks about the open source electronics CAD tool. The list of speakers is impressive. There are many names which I follow on social media and some I recognize from the KiCad team. For example, Wayne Stambaugh is the KiCad project leader and has one of the keynote talks.

You can see the full list of KiCon talks here. And tickets are available here.

Bald Engineer’s Apple IIgs KiCon Talk

Here is the description for my KiCon talk.

While documentation exists for 1970’s and 1980’s calculators and computers, unfortunately they exist in bitmap formats. As I started converting parts of the Apple IIgs schematic to KiCad, I realized something. There are benefits to “preserving” historical schematics in a living, active, and open format. In this talk, I talk about my experiences in converting scanned PDFs into KiCad, the project behind that motivation, and to encourage help from others to preserve history with KiCad.

So what is it? Well, several months ago, I did a couple of Apple IIgs hardware live streams. I have a project in mind for the MEGA-II ASIC. But before I could move forward on the project, I wanted a modern version of the IIgs schematic.

While schematics for classic 8 (and 16-bit) computers are readily available, they are usually only in PDF format. Studying the design is like reading a book. While I am glad the PDFs are available, I would like to be able to do actions like a search.

In my talk, I’ll explain why we should be converting these classic schematics into an open format. Along the way, I’ll take the audience through my journey of using KiCad for this project. In the end, I’ll be asking for help to convert other classic computer schematics.

Where is KiCad KiCon 2019?

The location for the conference is mHUB in Chicago, IL. If you’re able to attend in person, I look forward to meeting you. If you’re not able to travel, I fully expect either a live stream or recorded versions of the talks to be available.

Learn more about KiCad KiCon 2019

Date: April 26, 2019—April 27, 2019
Event: KiCon 2019 - Preserving history with KiCad
Topic: Preserving history with KiCad
Venue: mHUB
Location: 965 W Chicago Ave
Chicago, IL 60642
Public: Public
Registration: Click here to register.

high-end-oscilloscopes-evaluation engineering

The concept of high end varies depending on what you are talking about and who you talk too. In this Evaluation Engineering Evaluation Engineering article the author discusses high-end oscilloscopes. I am mentioned several times in this article as part of my day job at Rhode and Schwarz. There I am a product manager for oscilloscopes in North America. We have scopes that range from 50 MHz to 8 GHz.

For a little bit of context let me explain how this type of article works. The author, or editor, reaches out to some field experts. Each person is asked to fill out a written interview form. From there the author compiles the responses into a story like this one. This process is always nerve racking to me. I always worry I’ll misquote a specification or make a major typo. I don’t get see the article until it is published.

If you aren’t familiar with high bandwidth oscilloscopes, I think you will still find some value in reading about my favorite test tools.

Read the full article

Date: March 25, 2019
Appearance: High-end Oscilloscope report on Evaluation Engineering
Outlet: Evaluation Engineering
Format: Magazine

Surface Mount Rework Tools – Workbench Wednesdays

element14 Presents on YouTube
2019-03-27

In this element14 Workbench Wednesdays episode, I review tools provided by Weller which are suitable for surface mount soldering. Through-out the soldering series, I have been using mini-projects to see how the gear works. Making this particular video was special to me. The subject was a TI-85. Back when I was a kid, one of my first soldering projects was to replace a capacitor in the TI-85. At the time, all I knew is that the change would make it run faster. I didn’t know why I just knew it worked.

Today, I now know that capacitor was part of an RC oscillator for the Z80 CPU. It clocked the processor. By putting in a lower value, such as 2.2 or 4.7 pF, the calculator would speed up. The trade-off, of course, is that it means the batteries drain faster! But hey, before someone created Zshell, this was the only way to make Breakout run fast.

Of course, the focus of the episode is the gear from Weller. So please, hit-up element14 and check that stuff out. You can also find the polls I mention at the end of the video there.

Watch, Comment, and Vote on element14

If I were a professional actor, I would feel typecast at this point in my career. Whenever someone wants to talk about Arduino, Oscilloscopes or Capacitors, they call me! In this case, element14 asked me to do two videos on how to replace multilayer ceramic capacitors (MLCCs) with Polymers.

Polymers are an interesting capacitor type. What is usually called a “polymer” is better a called a “polymer electrolytic.” The reason for that detail is the word “polymer” describes the cathode layer and not the dielectric.

For more details, why not check out this episode of element14 Presents’ The Learning Circuit! If you have questions about these capacitors, head over to element14 and leave me a comment there.

e14’s TLC #40

Date: February 13, 2019
Appearance: Polymer Capacitor Introduction on e14s The Learning Circuit
Outlet: element14 Presents' The Learning Circuit
Format: Vlog