A couple of weeks ago I wrote about four current flow direction myths. As a follow up to that popular post, I decided to dedicate this month’s AddOhms electronics tutorial video to Current Flow. In episode #19, I tackle the question of which way does current flow.

You might have heard about “conventional flow” and “electron flow.” In conventional flow, we assume that current flows from the positive voltage towards the negative voltage. In digital, the “negative voltage” is usually called ground. However, that’s not how the electrons move nor is it how they carry the charge around a circuit path.

Electron flow is the description of how electrons carry a charge. Which is the negative voltage towards the positive? This confusion is a result of Ben Franklin mistakingly identifying how electrons moved so many years ago. Yet, we have kept the “positive” and “negative” labels as they are today.

The key though is that it doesn’t matter which method you use to analyze a circuit. Electrons move in a closed path. So whether they travel from positive to negative or from negative to positive, doesn’t matter!

## AddOhms #19: Current Flow Direction

Check out the full AddOhms Electronics Video Tutorial on Which Way Does Current Flow on the AddOhms YouTube Channel.

| | Posted in Videos
Disclosure of Material Connection: Some of the links in the post above are “affiliate links.” This means if you click on the link and purchase the item, I will receive an affiliate commission. Regardless, I only recommend products or services I use personally and believe will add value to my readers. I am disclosing this in accordance with the Federal Trade Commission’s 16 CFR, Part 255: “Guides Concerning the Use of Endorsements and Testimonials in Advertising.”

Long comments, URLs, and code tend to get flagged for spam moderation. No need to resubmit.

ALL comments submitted with fake or throw-away services are deleted, regardless of content.

Don't be a dweeb.

## One thought on “Current Flow Direction”

1. Alan M says:

I think you should explain why we fit fuses to the +ive and not 0V
On split rail op-amp power rails, there is an equal and opposite -ive potential, that should also be considered.
Power routing distribution and protection is an increasingly important discipline in systems, from PCBs to power-plants.
Subject for another blog James?